

Superconductivity

- Zero resistance to dc current
- Expels magnetic fields
- A state of matter (like ice vs water) but of electrons
- Occurs below a critical temperature T_C , current density J_C , magnetic field B_C .

Superconductivity – discovered in 1911 by Kammerlingh Onnes

Onnes original plot of the resistance of Mercury versus temperature showing the first observed transition to the superconducting state.

Barrett O. Wells

Figures from C. Kittel, Introduction to Solid State Physics

UConn Physics

UCONN

Theory

Immediately recognized that superconductivity was connected to the new quantum theory,

- "It has become more and more clear that a change in the whole theory of electrons is necessary. Theoretical work in this direction has already been begun by a number of research workers, particularly by Planck and Einstein."
- Nobel citation, Swedish Academy of Science, 1913.

Nobel Prizes

- 1913 Kammerlingh Onnes (discovery in Hg)
- 1962 Lev Landau (partially for SC)
- 1972 Bardeen, Cooper, Schrieffer (theory)
- 1973 Esaki, Giaever, Josephson (tunneling)
- 1987 Bednorz, Mueller (High Tc)
- 2003 Abrikosov, Ginsburg, Leggett (vortices)

Record T_c versus Year Discovered

J. Bednorz and K.A. Muller, IBM Zurich

Barrett O. Wells

Barrett O.

MRI of lower human spine / MRI Imager (from, J.P. Hornak, <u>The Basics of MRI</u>)

Barrett O. Wells

Ship Propulsion

SuperVAR Power Grid Regulation

Wind Power power conversion and grid connection

UCONN

Commercial power distribution, Holbrook, NY

American Superconductor Westborough, MA

Barrett O. Wells

Superconducting Magnet Energy Storage (SMES) System with Direct Power Electronics Interface for GRIDS (\$5.3M)*

Team (co-PI): BrocOct.sc2010 ciates ABB Inc. (V.R. Ramanan), Brookhaven Lab (Q. Li), SuperPower, Inc. (D.Hazelton) /U of Houston

Conn Physics

Barrett O. We

Barrett O. Wells

And ... On The Web

"What people don't know is that Billy Meyers, of ... Pleiadian Switzerland fame, ostensibly gave the IBM folks in Zurich a sample of the metal from his beam ship, that was given to him by the E.T.'s"

> Richard C. Hoagland http://www.enterprisemission.com/gtran6.html

Barrett O. Wells

Cuprates 1986.

- All high T_C SC are XYZCuO.
- All are connected to insulating, magnetic parent compounds via charge doping.
- Why Cu?
- Why near magnetism?
- Why T_C so high? [Higher?]

Phase Diagram for Cuprate Superconductors

x in La_{2-x}Sr_xCuO₄

Barrett O. Wells

Temperature

Iron Pnictides - 2008.

- Second group of high T_C superconductors.
- All are connected to conducting, magnetic parent compounds via some kind of doping.
- Why Cu and Fe?
- Why near magnetism?
- What is doping?

UCONN

FeTe parent (magnetic, not SC) substitute Se to make SC Up to FeSe

Barrett O. Wells

Our Group – What We Do

Air exposure

Two other reports of SC in FeTe films:

- 1. Y. Han et al., Phys. Rev. Lett. **104**, 017003 (2010)
- 2. W. Si et al., Phys. Rev. B 81, 092506 (2010)

Oxygen Annealing Reversibility

Annealing in O_2 , N_2 , CO_2 , H_2O , vacuum. Only $O_2 \rightarrow SC$

Process is reversible.

Barrett O. Wells

2 theta (degree)

Films are clean, tetragonal, (001) orientation.

Oxygen annealing adds no new phases.

Small lattice constant change.

As grown, *a*=*b*=3.83582 Å and *c*=6.27341 Å. Oxygenated *a*=*b*=3.77821 Å, and *c*=6.28351 Å.

XAS Fe L2, L3 edge. TFY detection (TEY very similar) SC films look like Fe³⁺

Barrett O. Wells

D. Telesca, arXiv:1102.2155

What about FeSe?

- **FeTe** as grown non-SC
 - oxidized SC
- **FeSe** as grown SC
 - oxidized non-SC
- **Both** little change T > 100 K

Barrett O. Wells

D. Telesca, arXiv:1102.2155

A Possible T=0 Phase Diagram

